Dynamic structures of horse liver alcohol dehydrogenase (HLADH): results of molecular dynamics simulations of HLADH-NAD(+)-PhCH(2)OH, HLADH-NAD(+)-PhCH(2)O(-), and HLADH-NADH-PhCHO.

نویسندگان

  • J Luo
  • T C Bruice
چکیده

Molecular dynamics simulations of the oxidation of benzyl alcohol by horse liver alcohol dehydrogenase (HLADH) have been carried out. The following three states have been studied: HLADH.PhCH(2)OH.NAD(+) (MD1), HLADH.PhCH(2)O(-).NAD(+) (MD2), and HLADH.PhCHO.NADH (MD3). MD1, MD2, and MD3 simulations were carried out on one of the subunits of the dimeric enzyme covered in a 32-A-radius sphere of TIP3P water centered on the active site. The proton produced on ionization of the alcohol when HLADH.PhCH(2)OH.NAD(+) --> HLADH.PhCH(2)O(-).NAD(+) is transferred from the active site to solvent water via a hydrogen bonding network consisting of serine48 hydroxyl, ribose 2'- and 3'-hydroxyl groups, and Hist51. Hydrogen bonding of the 3'OH of ribose to Ile269 carbonyl maintains this proton in position to be transferred to water. Molecular dynamic simulations have been employed to track water1287 from the TIP3 water pool to the active site, thus exhibiting the mode of entrance of water to the active site. With time the water1287 accumulates in two different positions in order to accept the proton from the ribose 3'-OH and from His51. There can be identified two structural substates for proton passage. In the first substate the imidazole Ne2 of His51 is adjacent to the nicotinamide ribose C2'-OH and hydrogen bonding distances for proton transfer through the hydrogen bonded relay series PhCH(2)OH...Ser48-OH...Ribose2'-OH...His51...OH(2) (path 1) average 2.0, 2.0, and 2.1 A and (for His51...OH(2)) minimal distances less or equal to 2.5 A. The structure for path 1 is present 20% of the time span. And in the second substate, there are two possible proton passages: path 1 as before and path 2. Path 2 involves the hydrogen-bonded relay series PhCH(2)OH...Ser48-OH...Ribose2'-OH...Ribose3'-OH...His51.OH(2) with the average bonding distances being 2.0, 2.0, 2.1, and 2.0 A and (for His51...OH(2)) minimal distances less or equal to 2.5 A (20% probability of the time span), respectively. During the molecular dynamics simulation the NAD(+) ribose conformations have stabilized at the C2'-endo-C3'-exo or the C2'-endo conformations. With the C2'-endo conformation the first and second substates are able to persist for different time spans, while with the C2'-endo-C3'-exo conformation the only possible pathway involves the first substate. For both first and second substates the fluctuation of the distances between the ribose-OH protons and N epsilon 2 of His51 imidazole ring is partially contributed by the "windshield wiper" motion of the His51 imidazole ring. Since the imidazole of His-51 contributes only about 10-fold to activity, as estimated from the decrease in activity upon substitution with a Gln, there must be an alternate route for the proton to pass to solvent without going through this histidine. A third pathway involves ribose C3'-OH and Ile-269. In MD2, near attack conformers (NACs) for hydride transfer from PhCH(2)O(-) to NAD(+) represent approximately 60% of E.S conformers. The molecular dynamic study of MD3 at mildly basic pH reveals that reactive ground state conformers (NACs) for hydride transfer from NADH to PhCHO amount to 12 mol % of conformers. In MD3, anisotropic bending of the dihydronicotinamide ring of NADH (average value of alpha(c) = 4.0 degrees and alpha(n) = 0.5 degrees, respectively) is observed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic and modelling studies of NAD+ and poly(ethylene glycol)-bound NAD+ in horse liver alcohol dehydrogenase.

Poly(ethylene glycol)-bound nicotinamide adenine dinucleotide (PEG-NAD+) has been successfully employed in the continuous production of L-amino acids from the corresponding alpha-keto acids by stereospecific reductive amination. Like many other dehydrogenases also horse liver alcohol dehydrogenase (HLADH) appears to be active with PEG-NAD+ as coenzyme, although the turnover number is three to f...

متن کامل

Structural alterations by five disease-causing mutations in the low-pH conformation of human dihydrolipoamide dehydrogenase (hLADH) analyzed by molecular dynamics – Implications in functional loss and modulation of reactive oxygen species generation by pathogenic hLADH forms

Human dihydrolipoamide dehydrogenase (hLADH) is a flavoenzyme component (E3) of the human alpha-ketoglutarate dehydrogenase complex (α-KGDHc) and few other dehydrogenase complexes. Pathogenic mutations of hLADH cause severe metabolic diseases (atypical forms of E3 deficiency) that often escalate to cardiological or neurological presentations and even premature death; the pathologies are general...

متن کامل

Nicotinamide Adenine Dinucleotide-Dependent Redox-Neutral Convergent Cascade for Lactonizations with Type II Flavin-Containing Monooxygenase

A nicotinamide adenine dinucleotide (NADH)-dependent redox-neutral convergent cascade composed of a recently discovered type II flavin-containing monooxygenase (FMO E) and horse liver alcohol dehydrogenase (HLADH) has been established. Two model reaction cascades were analyzed for the synthesis of g-butyrolactone and chiral bicyclic lactones. In the former cascade, all substrates were converted...

متن کامل

Highly efficient asymmetric reduction of arylpropionic aldehydes by horse liver alcohol dehydrogenase through dynamic kinetic resolution.

The enantioselective synthesis of (2S)-2-phenylpropanol and (2S)-2-(4-iso-butylphenyl)propanol ((S)-Ibuprofenol) has been achieved by means of Horse Liver Alcohol Dehydrogenase (HLADH) in buffered aqueous solution or buffered organic solvent mixtures; under the reaction conditions, a dynamic kinetic resolution (DKR) process was realized with good reaction yields and enantiomeric ratios.

متن کامل

Inhibition of Horse Liver Alcohol Dehydrogenase by Methyltin Compounds

The study of inorganic tin (SnCl(2), SnCl(4)) and methyltin compounds (MeSnCl(3), Me(2)SnCI(2), Me(3)SnCl) effects on the enzymatic activity of alcohol dehydrogenase (ADH) in the reaction of ethanol oxidation has been carried out. The experimental results of the study show that inorganic tin and methyltin substances induce slight inhibition of the catalytic activity of horse liver alcohol dehyd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 123 48  شماره 

صفحات  -

تاریخ انتشار 2001